AD=AO46 453 DELAWARE UNIV NEWARK INSY FOR MATHEMATICAL SCIENCES F/6 12/1
PIECEWISE CONTINUOUS SOLUTIONS OF PSEVDOPARABOLIC EQUATIONS IN =<ETC(U)
9m R P GILBERT: H BEGEMR AFOSR=T6-2879

UNCLASSIFIED INS~TR-20 AFOSR=TR=77=1273




o

.
—

N
O

Il
I

|.4

20

22

llie




AFOSR-TR- 77-1273

Piecewise Continuous Solutions of

Pseudoparabolic Equations in Two Space

Dimensions T

by

Heinrich Begehr
Free University-Berlin

and

Robert P. Gilbert
University of Delaware

Lo 1173

» i

'“lqplovOQ for public rel v e (
4 ed.

ADA046453

IMS Technical Report 20.

R S o5
N“‘n.
.\

L1R FORCE OFIFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TRANSMITIAL TO DDC

qhis technical roport has beer reviewed and is
N » v'_

rl.c rolease IAW AFR 190-12 (7b).

RS AR

sroved for pu

otribution is uulimited.

\. D. BLOSE
‘echiical Information Officer
This research was partially supported by the Air Force

Office of Scientific Research through Grant AF-AFOSR 76-2879.

AD

. DDC Fie copyt

ben 440 4<17

LB

o —




I. Introduction

One of the principal boundary value problems in analytic
function theory is the so called RIEMANN boundary value problem.
The simplest version of the problem requires the finding of
an analytic function ¢ in C€\T, where T 1is a closed
smooth contour, and a prescribed H6lder continuous jump is
prescribed for ¢ across I. The solution of this problem may
be given in terms of a Cauchy integral (see [5],[8],and [10] ).
In generalized analytic, as well as generalized hyperanalytic
function theory, a Cauchy-type representation exists, which
suggest that the Riemann problem may be solved in a similar
way. This problem was solved in [2]; whereas, in [l] the
second major boundary value problem, that associated with
Hilbert, was solved for generalized hyperanalytic function

theory.

In (7) pseudoparabolic equations of the form

(1) Lw: = %E w_+ aw + bé] + cw+ dw =10,
z -]

-~

where a, b, ¢, d ¢ Lp 2(¢), 2 < p were investigated. Integral
’

representations reminiscent of those occurring for generalized

analytic functions were found to be valid. This permits the

posing and solving of what we refer to as an initial-boundary

value problem of the Riemann type. The considerations of (7]

concerning the hypercomplex operator | XUU ' ‘ ‘i
1 J
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(2) 3-|ow + aw + bﬁj + cw + dw -
where
(3) pw: = ¥ 4 g(2) 5,
9z
; r-1 K
with q(z): = ] e q (X,¥)
k=1
(Here e is a nilpotent with ef =0.) suggests a natural

extension should be possible here. Indeed, similar results

should also be available for the metaparabolic equations of

the form,

(4) w_ + aw + bw + cw, + dﬁt =0,
z

and

(5) Dw + aw + bw + cw, + th =0 ,

In our work we make the simplifying assumption that the
coefficients vanish identically in the unbounded component of
C¢\.T. This condition may be removed if sufficient decay is
imposed on the coefficients as 2z + «; however, this leads to
further technical considerations. Moreover, we have only
considered the case where I consists of a single contour.

It would be of interest to treat the case where p* is multi-
connected, but the multiplicity is a piecewise constant with

respect to t .




II. Representations of Solutions

By means of the Pompeiu operator the pseudoparabolic
equation
(1) Lw = 0 , Lw: = §€ [w_ + aw + bWJ+ cw + dw ,

~ ~ Z

may be reformulated as the integral equation

t
(2) W J (aw + bw) 88dn _ 1 [ I (cw + dw)dr S&dn
T g T-2

= w(z,0) - = l (aw(;,0)+b572767¢§§§ﬂ +0(z,t)) ,

where ¢;£(z,t) = 0. Here

<b(zlt) .

ak(t)zk (e €, teR), %(2,0) 2 0 ,
k

e~ 8

0

and ¢(z,t) is a differentiable function of ¢t .

If for each t € R, w(z,t) is a bounded function in ¢ ,
then ¢®(z,t) is a bounded analytic function in € for each t.
By Lionville's Theorem ¢(z,t) is a function of t alone

i.e. ®(z,t)

#(t). In this case as 2z + » in (2) one has
P(t): = w(ewo,t) = w(e,0) , i.e. ®(0) =0 ,

consequently for bounded solutions (1) is equivalent to




t
(3) w - % I (aw+bw) %ggﬂ 5 % f fo(cw+da)dT %%%ﬂ = o(t) + ¢(2),
c C
where
@  v@: = w0 - L[ (awi,0) + vitem | g0
¢

If now w is a continuous solution of (3) bounded in 2z € C

for each t € R then

¢e C(R) , ¢e C(¢€) .

We consider now (3) for given data ¢ € C(R), ¢ € C(C).

Lemma 1: Let ¢ € C(R), ¢ € C(C), and the coefficients a, b

satisfy the inequality

(5) %J[Ia(ﬁ)|+|b(t)|]g§—dl—:a<l (z € 0.
C IC‘ZI

Then in the space B¢(¢ x R) of functions which are bounded

in z e € for each t ¢ R equation (3) is uniquely solvable.

Proof: The difference w: = wl-ﬁz of two solutions of (3)
having the same initial data, and asymptotic behavior as

z * @, is a solution of the homogeneous equation

t
w= Tw ;= % 1 (aw+bw) dgédn + 1 I I (cw+dw)dr SASn .
C




If B denotes an upper bound of

[ el + 1a)) ean_

C 'C‘ZI
and
[lully ¢+ = sup |ulz,t)]
zeC,
lt]<1
then

Hrally < (e*8lel) 1 ally -

It follows that T 1is a contractive operator if

lt] < Min{l, 1%3};

hence, w = Tw has only the trivial solution

= . l-a
wiz,t} 20 for z2e€ , |t] < ty: = Mln{l, —F_} .

The statement holds also for |t| = t, because of continuity.

0
As the equation (1) is an autonomous differential equation

with respect to t we can extend this conclusion to read

e T g ey TR TR

w(z,t) =0 (ze €, t e R).

Let Bp(c) now stand for the class of functions having real

i

derivatives up to order p which are continuous and bounded.

Corollary: Let w(=,t) € C(R). and w(z,0) e B°(C).

Furthermore, let the inequali.. (5) hold. Then eguation (1)

is uniquely solvable in Bc(c X R).

r———————-—.—-—!—u—-»--»«---— , ' ——— . - YR o —




Lemma 2: Let ¢ € Cl(R) , ¢ € Bl(Q) , and inequality (5)

hold. Then integral equation (3) is solvable.

Proof. Equation (3) can be written in the form
w~Tw=20+ ¢

and be solved by iteration. If we put

W1 .-  + ¢ , Wy = o+ ¢ + ?wk-l (k € N)
then
S
w = lim w, = I T (0+¢)
k> k=0 i

is a solution of (3). The convergence of the series follows

from the estimates

@ o §(H)es et Ll

g=0 £ ®
lw || = sup |w <z,n|]
[ ° 't =zec, >
ltl<|t]
and
© k  k ||w ||
w(z,t)| < kzo %T [T%E] |t T—:Qa—t (ze€, teR).

In the following we are interested in special "bounded"
solutions of (1). If ¢ given by (4) is a bounded analytic
function in € then ¢ must be a constant, i.e.

¢(2z)

w(®o,0) so that

d(t) + ¢(z) = w(e,t).

e T




By this we are led to consider the equation
(6) we-Tws= Y,

where Y 1is a differentiable function of t in R .

(i) ¢ is a real function: The unique solution of (6) is

given by

Lty = kzo "

where o) are functions of 2z alone and Y, are given by

iterated integration of

1

|
<

t
e b ()2 = IO V- (T)dT (k e N)

The functions ak

by the functions a, b, ¢, @4 of the operator L ; they

are independent of {, and are determined

fulfill the following integral recurrence formulae.

a - 1 I [aao + b E‘] dédn _ L v

o U o) -2
C
(7)
P | ) dedn _ 1 — ) d&dn
8 = 2 I [aak + b ak] E§;ﬂ . j [cq(_l + dak-l] T-2 (k € N) .
C C

This system is solvable (see Vekua [ 9]). oy has to be the
first function F of the generating pair (F,G) corresponding
to the functions (a,b) (see Bers [3]) and the other ay in the
following ,denoted by Fk' are then uniquely defined from

F . The solution of (6), for given real y , may be seen

to be given by

(8) [F w] (z,t): = J F (2)y, (¢) (ze€ teRF: =F.
> k=0




A majorant of this series can be found by

sup |F(z)| su [v(t) |exp T%altl .
zeC ]| <|t]

(ii) y 4is a pure imaginary function: Then as in (i) one

obtains a solution of (6) in the form

(9) (G y)(z,t):

1]
N~ 8

Gk(z)wk(t) (z e C, t e R)

k=0

where Go: = G 1is the second function of the generating

pair (F,G) and the Gk are the solutions of the system

G —lJ[aG +b'<;']9-§ﬂ=i :
™ (o] (o]

o t-2
c
(10)
ol g ) ddn _ 1 c—|d&dn
Gy = 7 J [aGk + ka] i & J[CGk-l+de-l]C-Z (k € N).
C c
The coefficients F and G appearing in the representations

k k
for F , respectively G, have the additional properties

Fo("’) =1, GO(Q) =i, Fk(w) - ol Gk(m) =0 (k € ‘N) .

(iii) p =y, + iy, is a complex function: Let w be the

solution of (6) then
wW: =W - gwl - ng
is a solution of the homogeneous problem

WwW=-Twe=0

as can be seen by




(Fy, + Gv,) (2,0) = F_(z)y, (0) + G_(z)y,(0)
[€w1 + ng)(w,t) = ¥y (£) + iy, (k) = y(t)
and the corresponding function ¢ given by (4)

¢(z) = ¢(0)

which follows by the first equations in (7) and (10). With
this we conclude that W is identically zero; hence, we have

the representation
w=§‘wl+§w2.

Generally every solution of (1) with vanishing initial

data can be represented by the resolvent of an integral
equation when the coefficients a, b, ¢, d of g are asked
to vanish outside of the closure of a bounded domain D with

rectifiable boundary T.

Theorem 1. A solution of (1) in D x R, having zero initial

data w(z,0) = 0 , may be represented as
T Gl ) (1)
(11) LT IO J YT(C'T)QT (z,t;g,1)dg
r

- w00l 2, 6:0,008 | ar
wiz,t) , 2 e D
0 +r 2 £ D
The n‘k’ are the fundamental kernels of L and are given by
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(k) x (1)

(12a) & (z,t:C,T): = (Z,tiC,7) +

k=1..(2

-1)%1ix 2 (z,¢;2,1), (k=1,2).

Remark: Here the xk(z,t;;,r) are a system of fundamental
solutions of (1) having the Vekua x(k)(z,c) fundamental

solutions as the initial coefficients, namely

(k) e b

Gy e e 1)
X (z,€2L,T) = \)Z-O x\) (Z'C) (v+1)!

(12b) (k=1,2)

(See Gilbert-Schneider [7] and Vekua [9] pg. 167)

(12b) are convergent for all real t and 1, and

. k-1
x k) (z,5) = 51 exp[;‘k’(z)—m(k’(c{],

o 2(z-2)

w(k)eBa(C) ’ m(k)(z) = o(|z|“) (z + ©), a = E%% ;

The

Xék)(z,C)(vem, k=1,2) are solutions of the system (7). As

may be seen x{k)(z,;)eL (D),2<pl: hence, Xék)(z,c) belongs

Py
o2 (k) & -1

to C (D) for each zeC and X, (z,3) = 0(|z|] 7)(z » =,ze C,

vaNo) (see Gilbert-Schneider [7]). An estimation of the series

in (12b) shows

& (%) «

(z,6/0,0- x5 z,0- 3 ¥ (2,0 (t-0)

552) [ gEteci § (18] Lt aupx(¥
< |=—| |exp s—|t-T|- [ — ] ]sup X (C,Z)l
- B l-a onl 1-a v! oy 4 2

for each e €, t and 1T real .




e g DR S,

¥
7

Q(k) has the following local behavior

t

|

[ 5 -
) (z,t;0,1)- EX = o(]z-2z| Bt
-Z

Y

(z=2+0,t-1-0, 3=g~<l) 5

(13) | 22 (2, 65z,1) = 0()z-2] Be-1)

o (K)

(z,t:0,7) =.0(]z]  e-1]) (z + =, k = 1,2).
The proof of theorem 1 is given in [ 7].

Theorem 2. If w(z,t) is analytic in @ - ﬁ for each t € R

~

w(e,t) = 0, and wt(z,t) continuous in ¢ - D x R, w(z,0) = J,

A~

and a=b=c=d=0 in € - D, then

=
el [§T<c,r>nil’<z,t:c,r)dc - w{?c,?79§2)(z,t;c,r)di]dt =
r

~w(z,t), z ¢ D
et € R.

0 s Z €D

Proof. Let z ¢ C - D be a point of KR: = {g: I;l < R}
such that 2|z|< R and DCKp. The coefficients a, b, ¢, 4
vanish outside ﬁ. w is a solution of (1) in (Ky - D) x R.

By theorem 1

t
w(z,t) = 211‘—1 f [wr(c.'t)ﬂr(l) (z,t;¢,1)dL
0 a(xR-b)
- WT(C,TS QT(Z)(z,t:C.T)di]dr .

As w(z,t) = 0[(2)-1], wt(z,t) = 0((2)-1] (z » »), it follows

11



12

from (13) as R tends to infinity that the part of the
integral taken over || = R tends to zero. If z e D the

left side of the last equation has to be replaced by 0.

Theorem 3. A continuous solution of (1) in ﬁ x R with

w(z,0) = 0 where a, b, ¢, d vanish outside D may be

represented iﬂ the form

€
(14) wlz,t) = 537 jo j {¢T(;,T)Q:l)(z,t;l:,r)d; -

I
¢T1c,r)942)(z,t;c,1)df }dr (zeD, teR)

where

(15) 0(z,t): = 5oz J it x} %
r

is an analytic function of 2z in D, continuous in B, and a

continuously differentiable function of t in R .

Proof. The integral equation (2) now has the form

(16) w="Tw + 0.

~

As Tw is an analytic function of 2z in € - D, continuously 4

differentiable with respect to t in [R, and

(TW)(w,t) o, (Tw)(z,O) =0

it follows by theorem 2 that




13

1
it ] 1
2m1 Jo J {31(~IW) (C’T)QT(' )(Zrt;C'T)dC -
B

2 %’r'(?w) (z;,r)Q(_rzfz,t;c,’r)df}dT =0 " (EED, tER) .
As w and Tw are continuous functions in D x R , ¥ is
continuous there too and moreover ¢ is continuously
differentiable with respect té t and analytic in z. If one
replaces w in the integral of (11) by the right hand
side of (16) one gets (l14) by using the last equality. (15)
is to be found by the Cauchy formula for ¢ in replacing ¢
by w - Tw where Tw is observed to be analytic in- € -D

for every t € R vanishing at infinity.

The formulas (14), (15) may be considered as a device
for constructing all solutions of (1) with vanishing initial
data. They now will be used to prove another representation

for the solutions of (1).

Theorem 4. Every solution of (1) with a=b=c=d4d=0

outside D with w(z,0) = 0 is representable by

t (1)
wi(z,t) = ¢(z,t) + I I {0 (c.0)T 18,88, 1)
0 % T

+ ITILITS TT(Z)(Z,t;C,r)}dgdndT i

where ¢ is the function in (15), and P(k)(k = 1,2) are given

by
nr(l)(z,t;c,r): = Qf(l)[z,t;c,r), nF(Z)[z,t;C,‘l’): = Qéz)[z,t;;,r).
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Proof. The theorem follows at once by an application of the
Green identity for the domain DO {z:|z-z| > €}, formula (14),

and allowing ¢ tend to zero (see Vekua [9]).

As the kernels Q(k) as functions of (z,t), with fixed

(z,t),are solutions of the following equations

Qéi)(z,t;c.r) - a(@)e (z,t50,7) - BTET 082 (z,t5g,1) +

+c(r)aM (z,tie,1) + Ay 2 (2, tiz,1) =

I
o

’

ol (2, t:0,7) - 30 o (2,50,1) - b(e)alP (2, 650,1) +

I
o

+ c(z) 9(2)[z,t;c,1) + d(C)Q(l)[z,t;c,T) =
(see Gilbert-Schneider ([7]) one has
r(l)
T

- (z,t:g,1) = a(;)nil)(z,t;t,r) + b(0)al?) (z,t:0,1) -

- c(;)Q(l)(z,t;c,T) - -TETQ(Z)[z,t;C,T] :

" Piz)(z,t;C.T) = a(z n§2)(z,t;c,r) + b(c)Qil)(z,t;c,r) -
- c(@a? (z,¢;5,7) - aefe™) (z,¢;0,7)

or by integrating

" P(l)(z,t;c,r) = a(;]Q(l)(z,t;c,r) + plz 9(2)(z,t;c,1) +

% . 19)
+ C(C) I Q (z:t;CpS)dB o d‘C' I Q (z,t;C:S)dS ¢
T T




LS
e
W
4
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n F(z)(z,t;c,r) = STETQ(z)(z,t;C,T] + b(CJQ(l)(z,t;C,T] +

t t
+ cfz) j 2(2) (z,t;¢,s)ds + a(z) J Q(l)(z,t;;,s)ds .
T T

III A Second Integral Equation for Solutions.

Our preceding considerations, as well as those in [7 ],
are made under the restrictive assumption (5). Another similar
approach can be done without (5) for all a, b, ¢, d in Lp'2 (c)
(2 <p) » For this reason the fundamental kernels

Q(k)(z,c)(k=1,2) of the equation

w— + aw + bw = 0 ,

as given by Vekua (see [9], III 8), are used. From formula
(13.19) of Chapter III in [9] it is obvious that special solu-~

tions of (1) satisfy the integral equation

t
(17) w(z,t) - %J f [[c(c)w(c,r) f d(C)WIc.r)]Q(l)(Z.c) -
C

+ [c(c)w(c.r) + d(C)W(C.T)]Q(z)(Z:E)]dﬁdndt . $i5,t)
where ¢ 1is a solution of
@Et + a¢t + c0t =0 .

This can be seen by differentiating (17) with respect to t
and 1z after splitting the integral over D into one over

D_ and one over |z~z| < € as above. Again we are interested




e
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in bounded solutions of (1) in the sense that they are bounded
in € x I for every interval I of R. If w is such a

bounded solution and fulfills (17) for some ¢ then °t has

to be a bounded solution of
w + aw + bw = 0

in € for each t in IIR. If as before (FO,GO) is the
generating pair of this equation every bounded solution in ¢
has the form

AFO + uGo

with real constants A and u. By this ¢ has to be of the
form

d(z,t) = A(t)Fo(z) + u(t)Go(Z)
with real differentiable functions A and p of t in R.

(i) A = u = 0. If the integral operator in (17) is denoted

by P the problem
(18) w=-Pw=0

has to be solved. To show that it has only the trivial solution

one observes the bound

%I [IC|+ld|][|Q(1) (Z,C)|+IQ(2) (21C)']d€dn LK <=,

¢
Let
llwll + = sup lw(z,&)] s
zeC,
k|t|<1




then for z € € and «|t| < 1 it follows from (18) that

Wiz, t) | < el lwl] l¢

But this means that w vanishes identically in z & € and
k|t| < 1. As above, because of autonomity of L , w must

vanish identically in € x [R.
(ii) uy = 0. Now the solution of
w - Pw = )\F
~ o

is sought, and this can be done by iteration, namely

wi:=AF_,w:=w +Pw _(keN), w: = limw, = ] P'w_.
(o) o k o ~ k=1 Yosibn k=0~

The function w is then uniquely defined when the convergence

of the series has been shown.

t

Aeop (T)AT  (teR), (keW),

P AFO = Aka(kelNo),A0:= A,Ak(t)= f

0

Fo(z): =+ [[cmpk_l(c)+d(c)rk‘_l(c)]n‘“(z.c) +

:
ES
¢
£

+ le(mIF,_ (@) + ETE)Fk_l(c)]Q(Z)(z,;)]dgdn (keN) .

The convergence follows from the estimates,

k e X
HE L < FHE o Tl < o= Tl ken )
where

[IF ||= sup|F (2)| , ||A || : = su I A, (1) |
e S T

17
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so that

oo

(19) (FA) (z,t): = ] Ay (£)F) (2) (ze€, teR)
s k=0

is the solution. The functions lk and Fk have the
properties

Ak(O) = 0 (kelN), Fk(w) = 0 (keN), Fo(m) = 1.

(ii1) X = 0. 2s in (ii)

e 8

(20) (G )Y (z, &) = uk(t)Gk(z) (ze€, teR)

k=0

is the unique solution of

w - Pw =
~ uGo

where My and Gk are defined similarly as Ak respectively

d
Fk an

P (0) = 9 , G (=} =0 (keN) , G (=) = i

(iv) A and y arbitrary. The solution of the general problem,

- ¢ = +
w gw A Fo uGo 5

is given by

The operators F and G are indeed the same as in (8) and

(9) because the F from (19) are special solutions of the

k
system (7) as the G from (20) are of the system (10). The
difference of two solutions of the k-th equation of (7),or
(10) ,is a bounded solution of

w+ aw + bw =0
z
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which vanishes at infinity. But this only can be the zero
solution. Because of these considerations we can now ignore
the assumption (5); that is a and b , as well as the

coefficients ¢ and d, only have to be in Lp Z(C).
’

(v) o(z,t) = £(z)t. If (17) has the form

(w - gw)(z,t) = f(z)t (feLp 2(C)(Z < p))

’

which for example is of interest when an inhomogeneous equation
Lw = £, £ independent of t , has to be solved, the same

calculations give the uniquely defined solution in the form

? tk+1

w(z,t) = £ (2) ~+——— , £ o5 = £ .

oo (k+1)1 o

$ (w)s -2 {[c(c)f (£)+ a(g) T XLy ]n‘l’(z z) +
k 3 m € k-1 k=1 '

+ l:c(r,)fk”_TrtT + aft;sfk_l(c)]n(z) (z,c)}dgdn (keN) .

IV. Piecewise Continuous Solutions.

In the following the coefficients a, b, ¢, 4@ are
supposed to vanish identically outside the closure of a
regqular bounded domain D and to belong to Lp(ﬁ) for some

p > 2

Lemma 3: Let p(z,t) be a HSlder continuous function of =z ,

and a cl function of t, for (z,t) e I' x I, I':=3D, I an

interval (or open set) of IR . Let T be the union of a

ey
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finite number of bounded, smooth, nonintersecting, closed

curves Iy (0 < k < m), such that ¢ - I' consists of one

multiply connected bounded domain D = D' and simply

connected domains D;(O o mLD- =¢C - D' where D; is

unbounded. Then

(21) o(z,t): = 2%{ J p(T,t) ‘g—E;
r

is analytic in D+ as well as i D for each ¢t ¢ I,

— ——

continuously differentiable with respect to £t for easch z £T

satisfying

PaF | dzg
0t(z,t) = 57T J Dt(C:t) T-z
i
and

¢+(z,t): = lim ¢(zg,t) = &(z,t) + % plz,t)

L+z

zeD’ (ze T, t e I).
¢ (z,t): = lim &(g,t) = o(z,t) - % plz,t)

L+z_

geD

Remark: Here (21) for z € ' has to be understood in the Cauchy
sense. The proof of this Plemelj-Sokhotski type formulae is
modeled along the lines of the ciassical proof. 1In this regard

see Gakhov [5],p.51 and p.64 and Muskhelishvili (8], p.128.
Alternatively we may write
0T (z,t) - 07 (z,t) = p(z,t), 0 (z,t) + & (z,t) = 20(z,t).
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Lemma 4. Let p and T, D+, D~ be as in the preceding

lemma and I =R, a, b, ¢, d in Lp(6+_ anishing outside

+ Q(l), Q(2)

D, the fundamental kernels 9£ the operator g

as given in Theorem 1. If then p(z,0) vanishes identically

O T

t

(22) w(z,t) = 5%? f [ {pT(;,r)Qil)(z,t; g,t)dg -

0 p

= DT(C,T)Q_I(_Z) (Z,t;C,T)dE}dT

is a solution of (1) in each component of € - T, and in

particular, of w =0 in C - 5+. Furthermore, w(z,0) = 0,
i Tt —
and w(z,t) fulfills the jump conditionmns,

(23)  w'(z,t) = w(z,t) + 0.50(z,t) (zel, teR).

w (z,t) = w(z,t) - 0.5p(z,t)

Remark: Here the first integral in (22) for 2z € I has to be

understood in the Cauchy sense.

Proof. Because of the local behavior of the fundamental
kernels (13) and the Plemelj-Sokhotski formulae for parameter

dependent integrals it follows with (21)
(w-0)"(z,t) = (w-0)(2z,t) = (w=0) (z,t) (zel, teR).

Therefore w - ¢ is continuous even on ' so that (23) follows.
That (22) is a solution of (1) follows by direct computation and
the differential equation system for the kernels (see Gilbert-

Schneider (7], (2.13)).
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o) 4 a0 - pa® L V) | 40T L g |
zt t

a(2) 4 an® _p) 4 0(2) _ 4T o
zt t t

Theorem 5: Let p have the properties stated in Lemma 4.

Let v be a solution of the associated equation

o

(24) L*v: %E (v_ - av - S;] +cv + dv = ’
P

defined in D x R and which vanishes at ¢t =T el for all

z ¢ €. A necessary condition for p to represent the

Holder continuous boundary data wh of a solution of (1)

in D, which furthermore has identically vanishing initial data

is that
T
(25) Im I [ pt(c,t)vt(;,t)dCdt =0,
0
and
* (1) —_— (2) -
(26) Jo I {or(;.f)flT (z,t;c.r)dc-oT(c,r)QT (Z.t;c.r)dc}dr
T

=0 (ze D, teR) .

Proof. Equation (24) is a conclusion of the identity of
Green (see [7], (2.18)). To see the validity of (25) one has

to consider




i
v
=
=
7
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ul(z,t)—w(z,t), zeD+, teR

u(zlt): = i
ul(zlt) ’ ZED ’ tEZlR ’
(27) tage smgd c, 02V (2,6 ¢,1)dc -
¥y YRR R 2Ti 0 Prlty T ZeLEG ¢
B

(2)

: (z,t;c,r)df}dr

i~ pT(CIT)Q

which fulfills the boundary condition

on T xR and for each fixed t in R
-1
ulz,t) =0{]z]"7) (z + =) .

Ifon T xR w = Y then u is in € X R a continuous
solution of (l),vanishing identically in t for 2z = «,and
identically in z for t = 0. By the proof of Lemma 1, u

vanishes identically.

Theorem 6. The condition (25) is sufficient for o to be

the boundary values of a solution of (1) in p* x R.

Proof. The function u, given in (27) is a solution of (1)

in DV xR and in D™xR andon T xR

Since (25) holds uy vanishes identically in D x R

so that uy vanishes identically on T x R.
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V. General Linear Riemann Boundary Value Problem.

Let I, a, b, ¢, d be as in the preceding section.
Let g, h, Y be HO6lder continuous functions of 2z on T
where vy may also be a function of t which is continuously
differentiable in that variable. Furthermore g 1is to have

no zeros on T,

Theorem 7. Let w be a piecewise continuous solution of (1)

in € x R with a jump over T x R; namely, on T x R

(28) wh = gw™ + hw + Y .

Furthermore, let w have the homogeneous data

w(z,0) = 0(zeC), w(=®,t) =0 (teR) .

If v 4is any solution of the associated problem (24), such

that v(z,T) 0 for some fixed T, and all z € € . Moreover,

let

(29) v. =v'g - vhh g% §§

on I x R, where s denotes the arc length parameter on T ,

then

T
(30) Im I [ {w;(z,t)v;(z,t) + yt(z,t)v:(z.t)}dzdt =0 .
o

Proof. From (28) it follows

T S——
- 4 - +
I (gw, v, dz hwtvtdz + AtvtdZ)dt-

r

T + +
Im I l wt(z,t)vt(z,t)dzdt = Im I
0

0

With (29) and the Green's identity (30) can be deduced.
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In the homogeneous case where Yy = 0 , the equalities

T + + * - -
Im J J w, (z,t)v, (z,t)dzdt = Im I f w (z,t)vt(z,t)dzdt =0
OT t t 0 I.‘l:

hold instead.

VI. The Special Riemann Boundary Value Problem.

Let now I consist of a single contour not passing

through the origin, and let h be identically zero so that

the problem to be studied is,

(31) Lw = 0 in ¢-T , w' o= gw +y on T xR,

~

As in the case of analytic functions (a =b =c¢c=d =0 in

¢ ) the solution depends on the index of g, that is

ind g: = E%T J d log g .
r

In the following the notation

+ +
W o282 Dy e R
w(z,t): = e iy
W () 2D ; teR

n(ez) then 2z "g(z) is a HSlder

will be used. If ind g
continuous,; nonvanishing complex function on T of index
zero. Hence,

$(z): = log g(z) - n log z

is a single valued,Holder continuous function on T.

w: = w exp(-W) ’ ‘P(z“ o ITlr-f f ¢(C)%
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leads (31) to the problem
(32) g—t{w_+aw+55]+cw+a?5=0, w+=znw—+;'
z
b: = b exp(2iImy), d: = d exp(2iImy),
Y: = Y exp(-¥-0.5¢).
(i) n =1ind g = 0. In the case of index zero the problem is
%E[w +aw + bo| + cw + do = 0 in (c\T) x R,
(33) .

W - # Y on T xR .

~

If the fundamental kernels with respect to a, b, ¢, d are

denoted by @'K) (k=1,2) then

e ot ok = (1)
w(z,t) = (IY)(z't):_Z_ﬂi— YT(CIT)QT (zlt;CIT)dC >
B 0

(2)

- Ve wmel 2, t0,mat)ar

is the solution of (33) uniquely defined by

w(z,0) = 0 (ze€), wlz,t) = 0(|z|™Y) (z+ =, t e R).

This is a conclusion of the Plemelj-Sokhotzki formula (23).
If to this solution a bounded solution wo(z,t) of the differ-

ential equation of (33) in (€ x R) with given data
W, (2,0) 20, w (=t) 20 (o (=t) ¢ C (R)

is added,one gets a solution of (33) with this "t-data"
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| and vanishing "z-data". As it has been shown in III this solution
w, can be represented by the operators (19) (respectively (20))

associated with the differential equation in (33) as

wy = EA + Gu (g (=,t) = A(E) + dn(e)).

If now w is a solution of the differential equation in (33) with non-

1
vanishing "z-data", namely

wl(zlo) = y(z) , wl(w,t) 2 Yl=)
and u 1is a particular solution of

( . < =
L bu| + cu + du = cy + 4y
ot 5

in the form (see III(V))

®© k+1

ufz. t) I 2 (w)

(k+1) !

with

A

£ : = cy+dy, fk(z): =

" e=——r==]2 (1)
& I {[?(C)fk_l(c)+d(C) fk_l(c)]‘i (z,3) +
e

+ [c(c)fk_l(c) + 5(E;fk_l<;)]ﬁ‘2’(;,z)}agdn (ke)

then wy = ¢ + u is a solution of (33) with homogeneous data.

Hence we have the following theorem:

e T T

Theorem 8. The general solution of (31) in the case n =0

Lg given by
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- - k+1 P i
4 - J f FA+G . .
{Ey(z t) o k(z) (k+1)!+ y(z) + l~ +~u}(z t)}

1 d
. exp(i?I I log g(c)z§;]

F
where € Cl(R)'X(O) = pu(0) = 0, veC(C), Y(=») = lim Y(z)e C.
Z+®
(ii) = = ind g > 0 . A special solution of the inhomogeneous
trans’ rmed problem (32) with
“w 1.,0) =0 (ze€), lim zn+1m(z,t) = x(t) (teR),xe Cl(m)

z-f&

can ™+ found by the transformation

m+(z,t) ? zeD+

(34) dl(zlf) - ’ tCIR o
znw-(z,t), zeD

This function has to be a solution of

dle +aw +bu.| +co. +d.6, =0 in (C-T)x R,
€|, = 1 171 1 1

1
(35) -
wI = m; + ; on T xR
where b , zep' d , zeD'
blz = v dlz = ‘
(z271)™ , zeD™ ; (zz"1)"g , BED

It must also satisfy

0 (ze€), w,(z,t) = O(|z|-1) (z + ®, teR).

ul(z,O)
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The solution of this problem is uniquely defined by

A

(36) wl(z,t = (gly)(z,t): el

t
fJ{iJC.T)Q{i)(z.t;C,T)dC -
ol

i ;T(C'T)Ql(.i) (zlt:' C'T)dz}dT

where Q{k)

(k=1,2) are the fundamental kernels belonging to

a, bl' Cs dl' The uniqueness follows because the homogeneous

problem (35) with ; = 0 has only the trivial solution.

Using the function wl we seek a special

solutica w of (32) by means of the transformation (34), namely

(373 st eow 4in D xR, wt=2 Pu. in D xR.
1 1

Now the general solution of the homogeneous problem

2
ot

0 in (€-T) xR,

[w_ + aw + bE] + cw + du
z

(38)

"
o
o
=]
3

PR x R
has to be found. In order that a solution w
behaves regularily at z = »(for each t in R), the

solution of the transformed problem (35) with ; = 0 may

w
1
only have a pole of order no greater than n (for each real

t). We have assumed that the coefficients of L vanish near

infinity in order that wy be of the form

a(z) + B(z,t) , B_(z,t) =0
z

in the vicinity of « (for t in R), As wl(z,O) = 0 the

function o must be analytic.
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A

Let F be the operators (19) (respectively (20))

~k ' gk
corresponding to the equation
1ok

w_ + aw + (?z—l)kblﬁ] +cw + (zz ) dlw =0 (0 <k <n)
z

mlw
t

(39)

and A, p be real continuously differentiable functions of t
in [R; then

G +
wo gkA gku

is a bounded solution of (39) with

Wo(®,t) = A(t) + iu(t), w_(2,0) = F, (2)A(0) + G, (2)u(0),

where F _,G is the generating pair associated with

k" 'k
e W N .
a,(zz ") "b,|. The operators F, ,G defined by
1 -~k =~k
[p o](z t): = zF[F. o] (z,t) G, 0| (z,t): = 2%[G 0| (z,t)
"k ’ "'k ’ [ 4 "k ’ . ~k ’

are useful to construct solutions of (35) with ; = 0 having
a pole of order k at infinity. The operators Fk’Gk(o < k < n)

are linearly independent over [R. If more generally

n
) [gklk i 9k“k} it

k=0
then
kzo z [gkkk +G uk](z.t) =0 .

Allowing 2z to tend to infinity, one gets that

An(t) + iun(t) E0.
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Proceeding in this manner it follows that

Ak + 1uk =0 (0 < k. < n).

On the other hand

e~

F, A, + G yu ]
ko [~kk "’kk

is a solution of (35) with ;'= 0 for every system Ak'uk

of real continuously differentiable functions of t in [R

having a pole of order less than or equal to n at infinity .

If in analogy to (37) Fk,é (0 < k < n) are defined by

= J+ L S WEE | =ial= . _=n - k-n_
[§k°] : ‘[§k°] -E e [§k°] et [§k°] =z ¢

[§k¢]+: ¥ zk§k° ' [§k°]-‘ 5 ’k-ng ® .
then

n S - 1 ]
(40) kzo[gkxk + gkuk] [*k'“k eci®) , 0k <n

is a solution of (38).

Lemma 5. Every solution & of problem (38) with &(z,0) = 0

is given in the form (40) where A, (0) = M (0) = 0(0 < k < n).

Proof. As a, 5, C, 5 vanish near infinity and &(z,0) = 0 ,

@ 1is analytic near infinity (for each t) so that
o k-n
d(z,t) = 0f|z| (z+ =, teR, 0<k<n),

or more precisely
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lim[zn-kt?)(z.t)J = (8 +in () (teR)
z»oo

where A and

- 1l A )
K W, are in C " (R) and Ak(O) = (0) = 0.

Mk
We note, furthermore, that

~

is a solution of (38), analytic outside D+. Moreover,

> n-k[. = ~ b . n-k. 2 i
lim 2z [w-gk)\k E;k"k_] (z,t) = llm[z w-{‘kkk §kuk:[(z,t)

Z+® Z>o

=0 (t e R),
so that
] n-k+l|~ = =0 i g
;_J;: z [-lj‘kkk G| (2/8) = A, (&) + 1y () (teR),
where Ak-l and uk-l are Cl(R) functions vanishing in ¢ = 0.

By induction we arrive at a solution of (38) having the form

k

o = > AR = ~ 1
w: = & vgo[gvkv + §vuv], Av,uvec (R),
)\v(o) = uv(O) =0 (0 < v < k)

with the properties

w(z,0) = 0 (ze€), w(z,t) = o[|z|'“'1] (z+, t eR).

But then
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(35) with ¥y

0 and

w, (z,0) 0 (ze @), wl(z,t) = 0[|2|-1] (z + >, t € R)

so that w vanishes identically in € x R. Adding to

1
W an arbitrary solution of (38) of the form (40), the

assumption on ®(z,0) in the lemma appears unnecessary; consequently

the following theorem holds.

Theorem 9. The general solution of (31) has the form

n
w(z,t) = {w(z,t) + V(z) + ] [f A, + G yu ](z,t)}
xeol~K'k ~ ~k'k
e b [ 0018
r
with
= 0, S k1 .
IY ) fk(Z) in D
£ k=0 (k+1)!
w(z,t): =
- . - k+1 "
z n[IlY] T nfk(z) - in D
5 k=0 (k+1)!

where ¥,A\ 4 (0 <k <n), £ (ve No) are given by the initial

data SE w, and the fv are defined EX (42).

Proof. 1If &o is an arbitrary solution of (38) with given data
Vv(z): = 60(2,0) (z € )

such that ao(z,t) does not have a singularity at z = = ( for
all real t), and u is a special solution of the inhomogeneous

problem
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) £ - e AL 1 =
(41) gz[ui + au + bu] + cu + du = y: cy+dy in (€-T)x R,
wtW=2"" on rxR, u(z0) =0 in ¢, u(e,t) = 0 in R,
then
w: = &O -y +u

is a solution of (38) with homogeneous data

w(z,0) =0 in ¢ .

Hence, by lemma 5 & may be given in the form (40), where

0 (0 <k <n).

Ak(O) - uk(O)

To find a special solution of the inhomogeneous problem
(41) , we consider the equation
{ Y in D

v +av + b V] +cv+d,v=f, f =
= 1l 1

3

where

by and 4, are as in (35) and v is determined similarly by u as

Wy was in (34) by w . One such solution can be found by solving

the integral equation

v-Pv=~Fft¢t ,

sl |
where
(P,v)(z,t): 1f* c(z)v(zg,T) + 4, (g)v(g,T) Q(l)(z ®
=1 ’ o= '1"' (4 ’ 1 ’ 1 ' G
o C
+ [eivin + dl(c)v(:.r)]nl(z’(z, C)}didndt
and

T = -1 [f(r.m{”(z,c) + 00 (2,0 |akan
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Here Q{k) (k=1,2) are the fundamental kernels of the equation

w +aw + b.w =0 .
z 1 |

As shown in III(v), the solution is given by

o fk+l
gin. e m 1 FoAg) S

k=0 X ° (k+1)!

(42)  f:=1%, f£(2): =1 J {[;(c)fk_l(c)+dl(c) fk_lwc)Jn{I’(z.c>
c

+ ic(c)fk_l(c> + a;TrTfk_l(c)19{2’<z,c) akdn (ke),

where fk(w) =0 (keNo).

By the lemma 5 and this special solution the general solution

of (31) may be found.

F
|
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